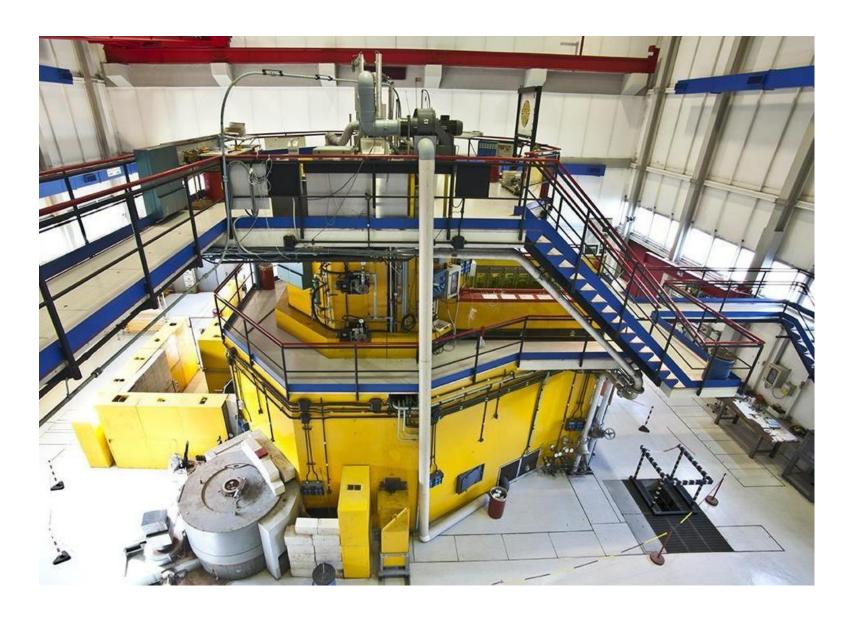
SECJRE

Strengthening the European Chain of sUpply for next generation medical **R**adionuclid**E**s

Nar Rome, 9–13 September 2024 nnovation

Conference & Exhibition

Separation of Terbium from Gadolinium target using cation exchange chromatography


Francesca Limosani^{1*}, Marco Capogni², Maria Letizia Cozzella¹, Tiziana Guarcini¹, Luigi Lepore¹, Angela Pagano³, Simone Placidi¹, Lucrezia Spagnuolo¹

¹ENEA, NUC-IRAD-CRGR, Nuclear Material Characterization Laboratory and Nuclear Waste Management ²ENEA, NUC-INMRI, National Institute of Ionizing Radiation Metrology ³ENEA, NUC-IRAD-RNR, Research Nuclear Reactor Laboratory

ENEA in SECURE Project

The EU funded SECURE Project, coordinated by POLATOM and involving a consortium of 17 European partners, aims to identify and utilize research infrastructures and raw materials in Europe to produce new radionuclides for theranostic applications in nuclear medicine, particularly alpha and beta emitters. ENEA is specifically tasked with conducting studies and experimental tests on physical and chemical processes to produce new radionuclides, including ¹⁶¹Tb. The ENEA team is investigating the possibility to produce ¹⁶¹Tb by neutron activation of a ¹⁶⁰Gd highly enriched gadolinium target, specifically by utilizing the reaction channel ${}^{160}Gd(n,\gamma){}^{161}Gd(\beta){}^{161}Tb$ in a nuclear reactor (ENEA TRIGA RC-1).

Separation Process

Mass target preparation

• Conversion of Gd_2O_3 in $GdCl_3$. Gd_2O_3 is dissolved in 2 mL of HCl 12 M, it is evaporated to dryness and it is again dissolved in 2 mL $NH_4CI 0.05 M$ and 1 mL di HCl 0.1 M and different amount of Tb are added.

Resin

Dowex 50W-X8 (200-400 mesh) NH_4^+ form; ø 5 mm, h 150 mm.

Loading Mass Determination

- All trials utilized 40 mg of Gd
- Tb mass is tested at 4 mg, 400 μ g, 4 μ g, 0.04 μ g

Mobile Phase Volume Optimization³

- Elution: 0.13 M α -HIBA and 0.14 M α -HIBA collected in 10 mL fractions.
- Flow rate: 0.2 mL/min and 0.4 mL/min

Gadolinium Recycling

Motivation

Production of no-carrier-added ¹⁶¹Tb would require the use of enriched ¹⁶⁰Gd, which is expensive. A recycling process of target material from Gd-Oxalate to Gd_2O_3 would be required to optimize the ¹⁶¹Tb production process.

Method

- To remove α –HIBA, a fast final purification on a second Dowex 50W-X8 NH_4^+ form is done.
- Separated Gd fractions are collected and ammonium oxalate is added to obtain Gd-Oxalate precipitate, which is subsequently centrifugated. • The precipitate is heated to 700 °C for 2h to decompose Gd-Oxalate to Gd_2O_3 . The obtained Gd_2O_3 is stored for analysis.

Figure.1 The TRIGA RC-1 at the ENEA Casaccia Research Centre

¹⁶¹Tb is a promising radionuclide in cancer treatment, showing similar decay characteristics and chemical behaviour to clinically employes ¹⁷⁷Lu.

The therapeutic effect of ¹⁶¹Tb may be enhanced due to the co-emission of a larger number of conversion and Auger electrons, which would be more effective in the treatment small metastases and single cancer cells.^{1,2}

To produce pharmaceuticals containing this radionuclide, an efficient separation and isolation process is necessary. Thus, the separation of terbium from large gadolinium targets is currently a hurdle to producing terbium-based pharmaceuticals with high specific activity. In this contribution, the authors focus on optimizing the separation process of Tb from Gd, using cation exchange chromatography with various concentrations of α hydroxyisobutyric acid as the eluent.

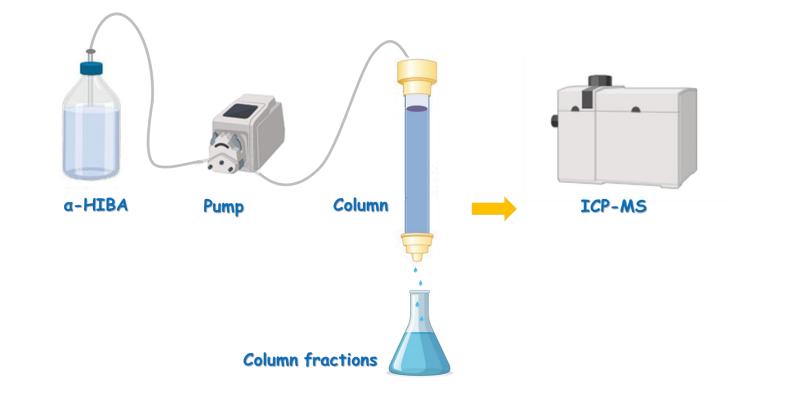
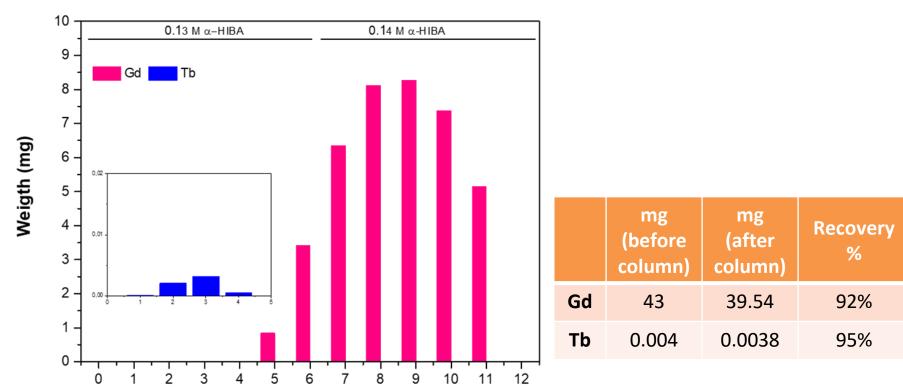
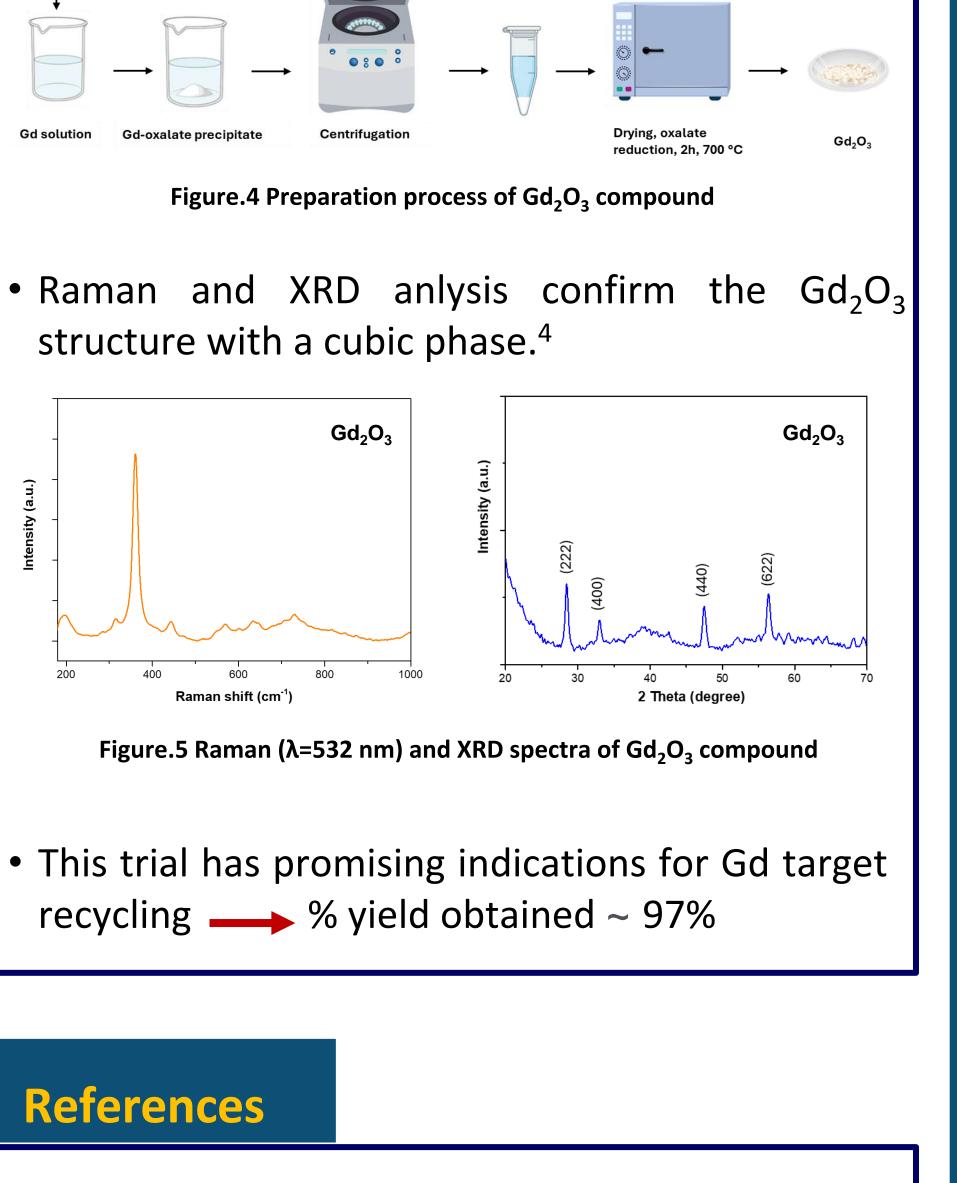




Figure.2 Representation of the Dowex 50W-X8 column and peristaltic pump used in all separation trials.

ICP-MS Analysis

ICP-MS analysis confirms the separation of Tb (fractions 1-4) and Gd (fractions 5-11) with a recovery for Gd and Tb of 92% and 95% respectively.

roduction and characterization of no-carrieradded ¹⁶¹Tb as an alternative to theclinically-applied ¹⁷⁷Lu for radionuclidetherapy, EJNMMI Radiopharmacy and Chemistry, 2019.

N. franction

Figure.3 Elution profile for the separation of Tb from Gd (Tb/Gd 1:10000)

Project partners

- Narodowe Centrum Badań Jądrowych (NCBJ) Poland
- Nuclear Research and Consultancy Group (NRG) Netherlands
- Institut Max von Laue Paul Langevin (ILL) France
- Institut Jožef Stefan (JSI) Slovenia
- European Nuclear Education Network (ENEN) Belgium
- Energiatudományi Kutatóközpont (EK) Hungary
- European Federation of Organisations for Medical Physics (EFOMP) Netherlands
- Agenzia nazionale per le nuove tecnologie, l'energia e lo sviluppo Economico sostenibile (ENEA) Italy
- Studiecentrum Voor Kernenergie / Centre d'etude De L'energie Nucleaire (SCK CEN) Belgium
- Evalion sro (EVALION) Czech Republic
- Budapesti Műszaki és Gazdaságtudományi Egyetem (BME) Hungary
- Clust-ER Industrie della Salute e del Benessere (Clust-ER Health) Italy
- Clusterul Regional Inovativ de Imagistică Moleculară și Structurală Nord-Est (IMAGO-MOL) Romania
- Istituto Romagnolo per lo Studio dei Tumori Dino Amadori (IRST) Italy
- Université de Bretagne Occidentale (UBREST) France
- Univerzitetni Kliničnl Center Ljubljana (UKCL) Slovenia
- Joint Research Centre (JRC) Belgium
- National Nuclear Laboratory (NNL) United Kingdom

Project Duration

October 2022 – September 2025

Contact

Lead Beneficiary: NCBJ Coordinator: Renata Mikołajczak (NCBJ) Renata.Mikolajczak@polatom.pl https://enen.eu/index.php/portfolio/secure-project/

- McNeil, S. et al., A simple and automated method for ¹⁶¹Tb purification and ICP-MS analysis of ¹⁶¹Tb, *EJNMMI Radiopharmacy and Chemistry*, **2022**.
- Olszewski, G. et al., Development of ¹⁴⁸Gd analysis method using stable Gd, *Talanta*, **2021.**
- Manigandan, R. et al., Structural, optical and magnetic properties of gadolinium sesquioxide nanobars synthesized via thermal decomposition of gadolinium oxalate, Materials Research Bulletin, **2020**.

Funded by the European Union

Views and opinions expressed are however those of the authors only and do not necessarily reflect those of the European Union or the European Commission. Neither the European Union nor the European Commission can be held responsible for them.