

Supported Ni and NiCo nanoparticles as catalysts for CO₂ valorization by CH₄ tri-reforming

Conference & Exhibition

lational Agency for New Technolog Energy and Sustainable Economic Developmer <u>M. Leone¹, M.C. Campa², D. Pietrogiacomi¹, I. Pettiti¹, M. Bellusci³, F. Varsano³</u>

Chemistry Department, Sapienza University of Rome, P. le Aldo Moro, 5 - 00185 Rome, Italy; ² CNR-Institute for Nanostructured Materials, c/o Chemistry Department, Sapienza University of Rome; ³ ENEA, C.R. Casaccia, Via Anguillarese 301, Roma, Italy

Contact: michele.leone@uniroma1.it

Introduction

Reforming reactions of biogas, arising from anaerobic digestion of organic waste and typically consisting of methane (50–75%), carbon dioxide (25–50%) and smaller amounts of nitrogen (2– 8%), are presently a desirable route in the circular economy strategy reducing the environmental impact of greenhouse gas emissions. The catalytic conversion of biogas into syngas by Dry **Reforming** (**DR**, CO₂+CH₄ \rightarrow 2CO+2H₂, Δ H_{298 K}=247 kJ/mol) is ideal for its further transformation into fuels and oxygenates thanks to optimal H_2/CO ratio.

The Ni/Al₂O₃ industrial catalysts adopted for syngas production by CH₄ Steam Reforming (SR) suffer from deactivation problems when applied with dry feed, due to sintering and coking phenomena. The variable composition of biogas, having generally $CH_4/CO_2 \ge 1$ depending on the different waste adopted for its obtainment, prompts to find robust catalysts that are able to completely convert CH_4 by addition of wet air. In this complex feed ($CH_4+CO_2+O_2+H_2O$), a CH_4 Tri-Reforming process (TR) might occur consisting of concomitant Partial Oxidation (PO, $CH_4+1/2O_2 \rightarrow 2CO+2H_2$) by O_2 , SR by H_2O_2 , and DR by CO_2 reactions.

Precursor \rightarrow Monoclinic NiO/ZrO₂ (NiO/Zm) with Ni content about10 wt%

Solution of high surface area Zr**oxyhydroxide** (Z_{hv} , 360 m² g⁻¹) with Ni(NO₃)_{2(aq)} solution, drying at 110 °C and calcining at 900 °C (5 h) with a *slow heating rate* (0.25 °C/min).

Catalysts \rightarrow Monoclinic Ni/ZrO₂ (Ni/Zm)

obtained by in situ-reduction of NiO/Zm precursors in H_2 /He flow up to 800 °C.

Experimental

Materials

Precursor \rightarrow **NiO-CoO**/ γ -Al₂O₃ with about 12.5% Ni and 12.5% Co

 \triangleright Obtained by dehydration of γ -Al₂O₃ a 450 °C; co-equilibrium absorption of $Ni(NO_3)_2$ *6H₂O and $Co(NO_3)$ 2*6H₂O aqueous solution, overnight under constant magnetic agitation at T=25°C; filtration, drying at 120 °C (12 h) and calcination at 600 °C (1h) with a heating rate of 10°C/min.

Catalysts $\rightarrow \text{NiCo/}\gamma\text{-Al}_2O_3(\text{Ni}_{50}\text{Co}_{50})$

 \blacktriangleright obtained by *in situ-*reduction of precursors in H₂/Ar flow for 5h at 900 °C.

In this work the CH₄-TR performances of a supported Ni/ZrO₂ catalyst, resistant to sintering and carbon deposition in the CH_4 -PO [1], are compared with those of a NiCo alloy supported on AI_2O_3 , very active as magnetic catalyst for CH_4 -SR [2].

Characterization and reactivity studies

- **Chemical analysis** \rightarrow Atomic Absorption Spectroscopy
- N_2 adsorption/desorption at 77 K \rightarrow BET isotherm and BJH method for surface area and porosity
- **XRD characterisation** \rightarrow Cu K α (Ni-filtered) radiation

Dry-reforming (DR, CH_4+CO_2) Oxy-Dry-reforming (ODR, CH_4+CO_2+O_2) Bi-reforming (BR, CH_4+CO_2+H_2O) Tri-reforming (TR, $CH_4+CO_2+O_2+H_2O$)

under TR

eter ng		FoV WD 11.2 µm 8.38 mm Dot Energy SE, BSE 15 keV	Speed 1 Est. Current 10 pA	Station 2
Ż	 NiCo particles are somewhat larger than in fracture catalyst and reach size of 200 nm some aggregation occurrs also on Al₂O₃ support 			
		Catalysts	S.A. (m² g⁻¹)	Total por volume (cm ³ g ⁻¹)
		Zm	5.6	0.041
		10.6NiO/Zm fresh	4.5	0.039
),),				
32		γ-Al ₂ O ₃	250	0.843
		Ni ₅₀ Co ₅₀ /γ-Al ₂ O ₃ fresh	140	0.503
e ed				

- $(CO_2+O_2+H_2O)$ avoids the formation on carbonaceous deposits on catalyst's surface.

Trireforming) with Ni₅₀Co₅₀/ γ -Al₂O₃ a little more active than 10.6Ni/Zm:

- for $Ni_{50}Co_{50}/\gamma$ -Al₂O₃ the selectivity was always ~ 98%, while reached this
- The presence of O_2 and H_2O in the reaction mixture doesn't implicate

sel H2%

8:0.4:8 12:0.6:12

changes in the feed composition

For both catalysts, increasing [reactants] nearly up to industrial tail-gases composition and maintaining the same 100 120 20 60 reactant ratio $CH_4/CO_2=1$ Time (min) **CO**₂ specific consumption per unit time and H₂ specific production per unit time increased almost linearly, H₂ selectivity almost constant or little decreasing: limited H₂O formation by Reverse Water Gas Shift Reforming Dry **Concluding remarks** ✤ Ni⁰ particle supported on monoclinic ZrO_2 or γ -Al₂O₃ are heterogeneous in terms of size and of their interaction-strength with the support surface. • Ni/ZrO₂ and NiCo/ γ -Al₂O₃ catalysts are highly active and selective for syngas production by reforming of CH_4 with CO_2 in feeds with $[CH_4]/[CO_2]=1.$ \clubsuit A limited amount of co-feeded oxidants O₂ and H₂O nearly unchanged syngas yields. ✤ The quite similar activity of the two systems suggests that Ni⁰ active sites are a small fraction of exposed ones; they are possibly those at

the boundary of metal particles.

 \Rightarrow All the results make the two systems interesting for CO₂ valorization in tail gases of industrial plants.