

Synthesis and screening of MOF-based nanomaterials for the CO₂ electroreduction to methanol

Jose Antonio Abarca¹, Andrea Domingo-Revilla¹, Mariana Ferreira², Sara Realista², Paulo Nuno Martinho², <u>Guillermo Díaz-Sainz¹</u>, Angel Irabien¹.

¹Departamento de Ingenierías Química y Biomolecular, Universidad de Cantabria, Santander, Spain

²Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Ed. C8, 1749-016 Lisboa, Portugal.

CONCLUSIONS AND FUTURE PERSPECTIVES

Four MOF-based materials were tried out. All of them using 0.5M KHCO₃ as electrolyte, for 1 mg·cm⁻², at different fixed cathodic potentials: -1.3, -1.5 and -1.7 V vs. Ag/AgCl.

Given these results, future steps should include assessing C_2H_6O as another target product due to its concurrent formation with CH₃OH, exploring different cathodic catalyst loadings and evaluating ways of diminishing those high EC values.

ACKNOWLEDGEMENTS

[1] Hussain, I., Alasiri, H., Ullah Khan, W., & Alhooshani, K. (2023). Coordination Chemistry Reviews, 482, 215081.

authors of this communication fully The

project