The origin of out-of-equilibrium ferroelectricity in SrTiO3 under resonant ultrafast THz pumping

Lorenzo Monacelli, Department of Physics, Sapienza University of Rome, Italy

Advancements in laser technology have unlocked the potential to observe the real-time dynamics of nuclei on the femtosecond scale. Strontium titanate (SrTiO₃) presents a unique case as a quantum paraelectric material characterized by its near-ferroelectric transition at low temperatures, which is inhibited by quantum nuclear fluctuations. In this study, we simulate from first principles the time-resolved quantum nuclear dynamics of SrTiO₃ under pulsed THz radiation targeting the mode responsible for ferroelectricity. Our novel approach, entirely based on first principles simulations[1], accurately replicates the spectral features identified in time-resolved X-ray signals (like energy upconversion[2]) without any fitted parameter but also reveals the complex energy redistribution processes among all modes following phonon-phonon scattering. We also show how it is possible to stabilize a dynamical ferroelectric phase[3,4] thanks to the transient strain induced by the nonlinear dynamics of nuclei.

- [1] L Monacelli and F Mauri, Phys. Rev. B 103, 104305 (2021)
- [2] M Kozina et al, Nat Phys, 15, 387 (2019)
- [3] T F Nova et al, Science, 364, 1075 (2019)
- [4] X Li et al, Science, 364, 1079 (2019)