The evolution of Bi-based electrocatalysts during CO₂RR: Post-mortem and Operando investigations

Wenbo JU - South China University of Technology, Guangzhou, China

Electrochemical reduction of CO_2 to valuable chemicals and fuels has emerged as a promising approach to the net-zero emission target [1]. The p-block metals are selective for converting CO_2 to HCOOH, which enable to close the cycle of CO_2 and HCOOH for renewable energy storage [2]. Recently, bismuth (Bi)based electrocatalysts have received intensive attention, due to their low toxicity and relatively high stability beyond good selectivity and activity for the CO_2RR [3]. Many studies focus on the structure and composition effects of Bi-base electrocatalysts on the CO_2RR performance. Several active species, including metallic Bi, Bi₂O₃, (BiO)₂CO₃, have been reported. However, the evolution of the composition and structure of Bi-based electrocatalysts happens during the reaction, which makes significant impacts on the overall performances. Thus, intensive postmortem or in situ / operando investigations are required to clarify the reaction mechanisms.

In this work, Bi-based gas diffusion electrodes (Bi-GDEs) have been developed for operando Raman measurements. Operando Raman spectroscopy reveals that Bi₂O₃ undergoes chemical and electrochemical reactions in CO₂ saturated KHCO₃ solution during CO₂RR. Bi₂O₃ reacts chemically with CO₃²⁻ forming (BiO)₂CO₃ which has a layered structure. (BiO)₂CO₃ passivates the surface, and it can be electrochemically reduced to metallic Bi at a potential more negative than -0.56 V vs. RHE. Once metallic Bi exists on the surface, the CO₂RR happens, indicating that metallic Bi is active for the reaction. The evolution of nanoparticulate Bi_2O_3 to layered (BiO)₂CO₃, and then to Bi nanoflakes has significantly expanded the surface area of electrodes, elevating the geometric current density. The Bi-GDEs show excellent HCOO⁻ selectivity of larger than 90% at potentials in a wide potential range, and a high current density of 108 mA·cm⁻² at −1.2 V [4]. Bi-based electrocatalysts have different evolution pathways in acidic and alkaline environment, which determine the equilibrium potentials for Bi₂O₃ reduction to metallic Bi, and the morphology of electrodes. The deep understanding of the evolution of Bi-based electrocatalysts in Bi-GDEs will bring further improvements to enable its implementation in the CO_2 conversion at large scales.