CO₂ capture for energy harvesting: atomistic modelling of the working mechanism

Federico Raffone^{a&}, Davide Molino^{a&}, Pietro Zaccagnini^{a,b}, Alessandro Pedico^{a,c}, Simone Martellone^{a,b}, Giuseppe Ferraro^{a,b}, Sergio Bocchini^{a,b}, Giancarlo Cicero^a and Andrea Lamberti^{a,b}

^aPolitecnico di Torino, Dipartimento di Scienza Applicata e Tecnologia (DISAT), Corso Duca Degli Abruzzi, 24, 10129 Torino, Italy ^bIstituto Italiano di Tecnologia, Center for Sustainable Future Technologies, Via Livorno 60, 10140 Torino, Italy ^cIstituto Nazionale di Ricerca Metrologica, Str. delle Cacce, 91, 10135 Torino, Italy

It is well known that industrial process by-products pose a great threat for the environment. Among them, CO₂ is considered one of the most harmful because of its role in the formation of the greenhouse effect. CO₂ release in the atmosphere can be avoided by exploiting the socalled carbon capture, the process of sequestration of CO₂ thanks to a chemical reaction with a more stable compound. The technologies so far employed for capturing CO₂ are limited to the only selective capture and release of harmful gas, so they do not involve any form of energy recovery. Our research group has recently developed a new device able to harvest energy while absorbing CO₂, exploiting a supercapacitor setup in which an ionic liquid (IL) is both the electrolyte and the capturing agent. Through one of the two electrodes, CO₂ gas is fluxed when the device is in open circuit. The portion of the IL in proximity of the electrode captures the CO₂ while, on the other side of the device at the counter electrode, the IL remains unchanged. At the same time, a voltage rise is measured. Energy is, then, extracted by closing the circuit and discharging the device. Because the CO₂ capture of the IL is a chemical process and not an electrochemical one, the reasons of the voltage increase are still unclear. By means of classical molecular dynamics simulations, it was possible to associate the potential variation to the effect of charge redistribution in the ion of the IL induced by the capture of CO₂ and to the difference in chemical potential between the two ends of the device.