Development and perspectives of Ga₂O₃ epitaxial layers for power electronics

Roberto FORNARI - University of Parma

Ultrawide bandgap (UWBG) semiconductors such as gallium oxide (Ga₂O₃) have gained considerable attention and attracted interest for applications in power devices, optoelectronics, and high-temperature sensors. Ga₂O₃ exhibits five polymorphs: α (rhombohedral), β (monoclinic), γ (defective spinel), δ (cubic), and k (orthorhombic). The monoclinic β -Ga₂O₃ is the only thermodynamically stable while other polymorphs tend to convert to β at high temperatures. Ga₂O₃ has an ultra-wide band gap around 4.8 eV, a theoretical electron mobility of about 200 cm² V⁻¹ s⁻¹, an estimated breakdown field over 6 MVcm⁻¹. Therefore, Ga₂O₃ is considered a very promising material for high voltage power-switching and next-generation power devices, as well as for fabrication of solar-blind detectors for UV-C radiation. A major advantage of β -Ga₂O₃ over the established GaN and SiC is given by the possibility of growing single crystals from the melt, thus providing large size substrates for epitaxy. Floating zone, Czochralski (CZ), vertical Bridgman, and Edge-defined Film-fed Growth (EFG) were successfully applied to growth of bulk Ga₂O₃, although so far only CZ and EFG were applied to production of substrates. At present, both n-type and semi-insulating β -Ga₂O₃ wafers are commercially available, usually doped with Sn and Fe.

The availability of conductive Ga₂O₃ substrates makes homoepitaxy and fabrication of both planar and vertical electronic devices possible, with the vertical structure preferred for power devices. Epitaxial growth is obtained by different techniques: pulsed laser deposition (PLD) molecular beam epitaxy (MBE), magnetron sputtering, halide vapor-phase epitaxy (HVPE), metal-organic chemical vapor deposition (MOCVD), and mist-CVD, which allowed to cover the entire range of Ga₂O₃ polymorphs. Research has mainly been directed to improving the epilayer structural perfection and doping efficiency, as well to increasing the growth rates. This included growing layers on heterosubstrates and misoriented homo-substrates to get step-flow growth and lower defect density. The addition of In and AI to the binary Ga-O system results in lower and higher bandgap, respectively, than Ga₂O₃, which brings about unprecedented physical properties and applications.

In this presentation, the recent advancements in chemical vapor deposition of epilayers of different phases of Ga_2O_3 will be discussed, along with some examples of diodes and transistors for high-voltage and power applications.

Acknowledgements: This activity is sponsored by PNRR MUR funded by the European Union— NextGenerationEU: project ECS_0000033_ECOSISTER "Ecosystem for Sustainable Transition in Emilia-Romagna". The valuable contributions of A. Baraldi, A. Bosio, T. Hidouri, P. Mazzolini, F. Mezzadri, A. Moumen, A. Parisini, M. Pavesi, S. Vantaggio at University of Parma; M. Bosi, R. Mosca, L. Seravalli at IMEM-CNR, and of the many students and international collaborators who supported the development of Ga_2O_3 in Parma are gratefully acknowledged.